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F1251, 2013. First published March 20, 2013; doi:10.1152/ajprenal.00101.2013.—The
importance of innate immunity for survival is underscored by its presence at almost
every level of the evolutionary tree of life. The task of “danger” recognition by the
innate immune system is carried out by a broad class of pattern recognition
receptors. These receptors are expressed in both hematopoietic and nonhematopoi-
etic cells such as renal epithelial cells. Upon activation, pattern recognition
receptors induce essentially two types of defensive responses: inflammation and
phagocytosis. In this review, we highlight evidence that renal epithelial cells are
endowed with such defensive capabilities and as such fully participate in renal
innate immune responses.
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THE FUNDAMENTAL ROLE OF THE innate immune system is to
initiate a quick response immediately after detecting “danger
signals” in the setting of infection (nonself) or tissue injury
(self). Swiftness is key, because, for example, the doubling
time of a single bacterium would allow it to produce millions
of progeny within a day if not kept in check. Innate immune
cells carry several families of receptors, collectively called
pattern recognition receptors (PRRs), which recognize con-
served features of pathogens. Some PRRs, such as the mannose
receptor and complement system, bind microbes and facilitate
phagocytosis. Other PRRs, such as Toll- and NOD-like recep-
tors, induce a wide array of proinflammatory and reactive
cytokines in response to danger signals (65).

Most mammalian species have 10–13 types of Toll-like
receptors (TLRs) (9). TLRs are responsible for triggering
innate immune responses to many forms of pathogens. TLRs
are heavily expressed in myeloid cells where they have been
extensively investigated. However, some TLRs, such as TLR4,
are also expressed and functional in other cell types, including
renal epithelial cells (124, 125, 140). Renal tubular TLRs
participate in the inflammatory response characteristic of many
forms of acute kidney injury. In addition, during injury, tubules
can also exhibit phagocytic function (55). Finally, renal epi-
thelial cells express major histocompatibility complex (MHC)
class II protein, costimulatory molecules, and produce a pleth-
ora of inflammatory and chemotactic cytokines (10). Accord-
ingly, it is increasingly appreciated that epithelial cells and
traditional innate immune cells can exhibit remarkable simi-
larities in behavior and function. In this review, we will

primarily focus on the less explored “innate immune cells”,
i.e., renal epithelial cells.

Epithelial Cells Are Not Alone

The kidney is a complex organ, consisting of at least 12
functionally different epithelial cell types (1). Epithelial cells
are surrounded by a dense network of immune cells. In partic-
ular, macrophages and dendritic cells, collectively called
mononuclear phagocytes, are the most predominant immune
cells in the kidney. The visually stunning mononuclear phago-
cytic network was beautifully described by Soos et al. (129) in
2006. This remarkable network may come as a surprise given
the fact that, unlike the gut, the kidney is a nonlymphoid organ
and lacks microbial exposure under normal conditions.

It is now increasingly recognized that mononuclear phago-
cytes have markedly diverse functions: from traditional phago-
cytic function to versatile, trophic roles (23, 42, 75, 79, 91, 94,
128). Under normal conditions, the mononuclear phagocytic
system is believed to play an important role in maintaining the
integrity of the tissue microenvironment. In fact, mononuclear
phagocytes (CSF1R�) are abundantly present even in early
embryonic kidneys. Interestingly, when the embryonic kidney
was cultured with CSF1 and endotoxin, significant growth in
the branch tips and nephrons was observed, presumably be-
cause CSF1 and endotoxin induced mononuclear phagocytes to
stimulate nephron growth (105).

Like for many other organs, the conventional classification
of dendritic cells and macrophages in the kidney remains
controversial because of overlap in function and surface mark-
ers (37, 54, 96). Multidimensional data such as multicolor flow
cytometry and microarray studies continue to reveal the com-
plexity of immune cells in various organs. As detailed in the
Immunological Genome Project, it is now evident that each
organ has unique sets of immune cell makeup (36, 89). The
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modern classification of immune cell subpopulations now
considers subset-specific transcription factors and ontogenies
(72, 116). The interested reader is referred to Refs. 15, 38, and
48 (general) and 23, 78, 96, 108, and 132 (kidney) for further
details.

Epithelial Cells and PRRs

Much progress has been made in understanding the origins
of microbe sensing and innate immune responses. Among
diverse PRR families, TLRs are the most extensively studied
receptors over the past decade. TLR4 is a functional homomer
and requires coreceptors CD14 and MD2 for tighter binding
with its ligand, lipopolysaccharide (LPS). TLR2 is heteromeric
and complexes with TLRs 1 or 6. Crystallographic analysis
showed detailed interactions between the TLR4:MD2 and LPS
complex. Similarly, TLR2/TLR1 and its ligand lipopeptide, as
well as TLR3 and its ligand poly (I:C), have been crystallized
(60, 80, 100). TLRs are strategically located in different
cellular compartments, allowing them to sense distinctive
pathogen-associated molecular patterns and assemble down-
stream signaling cascades (62). Some TLRs are exclusively
expressed in myeloid cells whereas others are relatively ubiq-
uitous and can be expressed by renal epithelial cells.

Renal expression of TLRs has been studied and confirmed
by many investigators. Nevertheless, some uncertainty remains
regarding the precise distribution of TLRs in the kidney. This
is partly because TLRs are such potent receptors that the
expression levels are naturally low at the levels of mRNA and
protein. In monocytes, it is estimated that TLR4 is present at
1,300 molecules, whereas CD14 is expressed at 115,000 mol-
ecules/cell (135). In nonmyeloid cells, TLR4 expression is
likely much lower. Furthermore, due to the inherently complex
kidney architecture, one needs to combine technically intricate
microdissection, in situ hybridization, and immunostaining to
adequately characterize TLRs expression and distribution
among various renal cell populations. In that regard, immuno-
staining remains very challenging because of lack of firm
antibodies in this class (41, 71, 123, 140). Nevertheless, col-
lective evidence strongly supports that a number of TLRs are
indeed expressed in renal epithelial cells. We and others have
previously reviewed the expression of TLRs in the kidney (13,
25, 39, 126).

TLRs in Kidney Injury

Many investigators have reported that tubular expression of
TLR2 and TLR4 is increased by experimental ischemia-reper-
fusion injury in rats and mice (66, 113, 140). For example,
TLRs are believed to be activated by various damage-associ-
ated molecular patterns, such as the high-morbidity group box
1 (3, 4, 58, 82, 112). Importantly, Wu et al. (141) examined
bone marrow chimeric mice between TLR4 knockout and
wild-type mice. Chimeric mice lacking renal TLR4 had signif-
icantly less tubular damage and azotemia compared with mice
lacking hematopoietic TLR4, indicating that intrinsic TLR4 in
the kidney is instrumental in mediating tubular damage (141).
Pulskens et al. (104) also demonstrated the importance of
intrinsic renal TLR4 after ischemic injury. Similarly, Leemans
et al. (76) examined bone marrow chimeric mice between
TLR2 knockout and wild-type mice and found that intrinsic

renal TLR2 has a central role in the unfolding of the injury
process.

In models of urinary tract infections, TLR4, TLR5, and
TLR11 have been shown to play protective roles (12). When
these receptors are defective or absent, clearance of the infec-
tion is hindered. It has also been shown that urinary tract
epithelial TLR4 and hematopoietic TLR4 are both crucial in
mounting a proper inflammatory response to infected bladder
mucosa or even pyelonephritis (101, 117). A role for renal
TLR4 was also proposed in more chronic models of injury such
as obstructive uropathy (103).

In human kidney transplantation, Kruger et al. (69) found
that TLR4 expression in proximal and distal tubules is in-
creased in deceased donor kidneys compared with living donor
kidneys. Furthermore, the authors determined donor TLR4
genotypes in a cohort of 276 subjects and found 30 subjects
with loss-of-function single nucelotide polymorphisms (SNPs),
Asp299Gly and Thr399Ile. These two loss-of-function SNPs
diminish receptor binding of endotoxin but do not affect TLR4
gene or protein expression (5, 106). Compared with kidneys
with wild-type alleles, kidneys with a TLR4 loss-of-function
allele had fewer proinflammatory cytokines, and the rate of
immediate graft function was higher. It remains to be deter-
mined whether this acute protection in TLR4-mutant receivers
translates into long-term protection. In summary, compelling
evidence indicates that renal epithelial TLRs are central to the
regulation of tissue immunity and inflammation.

The Danger Model in the Kidney: S1 Proximal Tubules as
the First Line of Defense

To best illustrate the role of renal TLR4 in innate immunity,
we next discuss in some detail an animal model of endotox-
emia. As opposed to cecal ligation and puncture, ischemia, or
transplant models, endotoxin injury models can circumvent
concerns such as simultaneous activation of multiple TLRs
induced by often uncharacterized damage-associated molecular
patterns or polymicrobial infections (20). As such, they are
more useful models to characterize specific cellular and mo-
lecular pathways of injury.

Endotoxin, released from bacteria in various molecular
sizes, can be filtered by nephrons and interact with TLR4
expressed on the proximal tubules. We have recently shown in
vivo that systemically administered endotoxin is indeed filtered
and taken up by proximal tubules, resulting in tubular oxidative
stress (63). Importantly, endotoxin-induced tubular toxicity has
an absolute requirement for tubular TLR4. Conversely, TLR4-
expressing hematopoietic cells are not essential or sufficient for
endotoxin-induced tubular oxidative stress. Note that circulat-
ing hematopoietic cells are the primary source of systemic
cytokines (11). Taken together, the direct endotoxin-tubular
interaction is an important pathway leading to acute kidney
injury in endotoxemia.

We also found that filtered endotoxin is internalized pre-
dominantly by S1 proximal tubules where TLR4 appears to be
expressed the most (63). Two more observations support a role
for S1 as the first line of defense in the kidney against
endotoxemia. First, S1 endotoxin uptake can be upregulated by
endotoxin preexposure, indicating that it is a receptor-mediated
process rather than nonspecific endocytosis. Second, and in-
terestingly, this S1-endotoxin interaction does not result in any
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apparent immediate injury to S1 (Fig. 1). This is due in part to
the upregulation of cytoprotective molecules such as heme
oxygenase-1 and sirtuin-1 in S1 tubules (43, 47, 49, 95). The
lack of injury (e.g., oxidative stress) to S1 segments, despite
their direct interaction with endotoxin, underscores their high
potential for autoprotection. Such a phenomenon has been
reported in mononuclear phagocytes after TLR4-mediated ex-
posure to endotoxin (114). Like mononuclear phagocytes, the
S1 autoprotection mechanism seems to be dependent, in part,
on upregulation of cytoprotective molecules with antioxidant
properties. In this model of endotoxemia, the S1 segment acts
as the “sensor” of endotoxin in the filtrate and as such auto-
protects itself while simultaneously signaling to neighboring
segments such as S2 and S3. We note that while S1 autopro-
tects itself, there is widespread oxidative stress in S2 and S3
(Fig. 1). Whether this represents unavoidable collateral damage
or is actually part of a broad signaling cascade is unknown.
This function of S1 segments is remarkably similar to that of
Kupffer cells in the liver, which also signal the presence of
endotoxin to neighboring hepatocytes (110). In summary, S1
segments may play a sentinel role similar to innate immune
cells by sensing danger signals and signaling to neighboring
cells.

Teleologically, the role of S1 tubules as sentinels for immu-
nity is appealing. The kidney is a highly vascular organ which
filters hundreds of liters of blood per day, and a significant part

of the filtrate is reabsorbed by proximal tubules. S1 cells, with
their upstream location, are strategically poised to screen the
filtrate and “watch” for alarm signals coming from the circu-
lation. In particular, it is increasingly appreciated that endo-
toxemia is a rather common event, occurring daily at subclin-
ical levels during routine breaches to mucosal integrity in
various locations (84, 102, 119). An attractive possibility is
that, through this pathway, S1 could act as a “sink” for the
uptake and degradation of filtered endotoxin. This function is
very similar to that proposed for the liver, a major detoxifying
center for endotoxemia, particularly that originating from the
gut (57, 83). The mechanisms of hepatic endotoxin removal
have been reviewed elsewhere (16, 85, 110). These detoxifying
functions of the liver, and possibly the kidney, could represent
one aspect of the widely recognized ability of many organisms
to develop endotoxin tolerance (6).

We also note that TLR4 signaling pathways in the tubules,
both in their molecular details and ultimate functions, may not
be identical to those present in hematopoietic cells. For exam-
ple, SIGIRR, a TLR4-inhibitory molecule, while expressed in
tubular cells, does not seem to inhibit TLR signaling (73).
Feulner et al. (32) reported that murine proximal tubules
produce and secrete acyloxyacyl hydrolase into the urinary
lumen. Acyloxyacyl hydrolase is an endotoxin-detoxifying
enzyme, which could act to minimize the downstream effects
of endotoxin that evaded proximal reabsorption. Watts et al.

Fig. 1. Endotoxin-induced tubular oxidative
stress. A: live 2-photon microscopy of the
mouse kidney. S1 and S2 proximal tubules can
be discerned by their autofluorescence signa-
tures. S1 exhibits brown autofluorescence,
whereas S2 exhibits bright green punctate au-
tofluorescence. Nuclei were stained blue with
Hoechst. Distal tubules emit minimal autofluo-
rescence (DT). B: endotoxin-induced oxida-
tive stress was measured with carboxy-2=,7=-
dichlorodihydrofluorescein diacetate (green)
using 2-photon intravital imaging. Systemi-
cally administered endotoxin (red) was fil-
tered and internalized predominantly by S1
proximal tubules and yet prominent oxida-
tive stress was observed in S2 proximal
tubules. Endotoxin uptake observed in S2 is
secondary to fluid-phase endocytosis. C: be-
cause glomeruli are located at depths beyond
the reach of 2-photon microscopy, kidney
tissues were freshly dissected to image the
deeper segments. This further confirms the
internalization of endotoxin by S1 proximal
tubules and tubular oxidative stress in down-
stream S2 and S3 segments. G, glomerulus.
D: endotoxin-induced oxidative stress was
measured live with dihydroethidium, which
emits nuclear fluorescence in the presence of
cytosolic superoxide (orange; arrowheads).
Similar to B, S2 proximal tubules exhibited
oxidative stress whereas S1 tubules exhib-
ited no oxidative stress despite their greater
endotoxin uptake.
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(138) demonstrated that endotoxin inhibits HCO3
� absorption

in medullary thick ascending limbs of the loop of Henle (TAL)
through a TLR4-dependent pathway. Such downstream effects
of endotoxin are likely very varied and will require better
characterization in in vivo models.

In this section, we highlighted the roles of renal tubular
TLRs in tissue inflammation and immunity. This epithelial
cell-centric view could well apply to other organs (33, 74, 87,
127). Polly Matzinger (86), who proposed the danger model,
states:

The danger model says that it is a tissue that controls whether
you turn on an immune response, by sending alarm signals. It
is also a tissue that induces tolerance by allowing its antigens to
be presented without alarm signals. Perhaps, therefore, it could
also be the tissue that determines the class of immunity.

The Danger Model in the Kidney: Thick Ascending Limbs
Regulate Innate Immunity

If S1 proximal tubules are the first line of defense against
endotoxemia, TAL, on the other hand, may be essential regu-
lators of the innate immune response within the kidney. TAL
tubules span across all areas of the kidney except the inner
medulla (28). Consequently, TAL cells are contiguous to most
cell types (epithelial and hematopoietic) within the kidney.
With this distribution, they are strategically positioned to sense
and react to changes (physiological and pathological) in these
microenvironments, and possibly mediate various forms of
horizontal cross talk (27, 29, 40). Furthermore, TAL in the
highly susceptible outer stripe are resistant to acute kidney
injury compared with neighboring proximal tubules (18, 27).
Therefore, it is plausible to consider that tubules such as S1 and
TAL, with an essential modulatory role during activation of
innate immunity, must be more resilient to injury.

A unique feature of TAL is the production of Tamm-
Horsfall protein (THP; also known as uromodulin). THP is a
heavily glycosylated protein that is uniquely produced in the
kidney by TAL (29, 107, 120). While predominantly targeted
to the apex of the TAL by a GPI anchor signal (107), THP is
also released basolaterally by an unknown mechanism (26).
Although the functions of THP were elusive for many decades,
there has been a recent surge in our understanding of the
important role of this glycoprotein in various kidney diseases
(29). Interestingly, THP appears to function as an essential
effector produced by TAL during kidney injury to modulate
innate immunity. In fact, the immunomodulatory functions of
THP were a subject of controversy (29). Initially, THP was
shown to have anti-inflammatory properties, by suppressing T
cells in vitro (93) and binding renal cytokines and lymphokines
(IL-1 and TNF) (50). However, a number of subsequent studies
also performed in vitro suggested a proinflammatory role of
THP, specifically in activating neutrophils (53, 67, 139) and
monocytes (130, 144). In addition, Saemann and colleagues
(115) demonstrated that THP activates myeloid dendritic cells
via TLR4 to acquire a fully mature phenotype. With the
availability of THP knockout mice, we provided strong in vivo
evidence confirming that the role of THP is indeed anti-
inflammatory and protective during kidney injury (26, 27, 30).
In fact, the presence of THP, produced in TAL, inhibits the
production of cytokines and chemokines such as CXCL2 (27)
and CCL2 (26) in injured neighboring proximal tubules. There-

fore, THP mediates a regulatory cross talk between TAL and
proximal tubules, aimed at suppressing tubular activation of
innate immunity and promoting recovery (29). This is thought
to occur, in part, through basolateral THP released in the
interstitium and interacting with the basolateral domain of
proximal tubules, where its putative receptor was localized (26,
27). In addition, systemic levels of THP increase during re-
covery from acute kidney injury (26), suggesting a broader role
for THP such as mediating cross talk between the kidney and
other organs. Interestingly, recent data also showed that THP
regulates the levels of circulating cytokines by acting as a
urinary cytokine trap (81). Therefore, through the production
of THP, TAL tubules directly modulate innate immunity by
regulating tubular epithelial production of cytokines/chemo-
kines and their systemic levels. However, the extent of the
interaction of THP with the renal phagocytic system remains
uncertain. Dong et al. (21) suggested that THP may be part of
the renal antigens presented by dendritic cells after injury
caused by LPS injection. Whatever the extent of the interaction
between THP and the renal phagocytic system, the outcome,
based on the in vivo data from THP knockout mice (27, 30),
must be to limit injury and promote repair.

Finally, the role of TAL in renal defense comes full circle
through the functions of urinary THP in defense against bac-
terial colonization of the bladder mucosa. In fact, THP knock-
out mice are more susceptible to bladder colonization by
uropathogenic Escherichia coli (7, 90). This occurs because of
the binding of THP to E. coli, which prevents the interaction of
these pathogens with uroplakins on the surface of urothelial
cells (99). Therefore, THP serves as a decoy for pathogenic
bacteria in the bladder and limits their interaction with cell
surface receptors.

In summary, TAL tubules regulate innate immunity by
shaping the evolving response to danger signals during kidney
injury and by defending the urinary tract from pathogens. This
complex task is accomplished through the production of THP,
a unique kidney-specific glycoprotein.

Epithelial Cell-Immune Cell Interactions in the Kidney

Many mononuclear phagocyte markers are elevated in the
kidney after acute tubular injury and even in chronic diseases
such as polycystic kidney disease (44, 92, 147). It was also
shown that many of these proteins are upregulated not only in
mononuclear phagocytes but also in epithelial cells. Renal
epithelial cells secrete chemokines in response to direct stim-
ulation with TLR ligands (133). MHC I and II are highly
expressed on proximal tubules after transplant and other stim-
uli (8, 34, 142). Tubular injury also increases tubular expres-
sion of costimulatory molecules (77, 97, 136). There are even
some data to suggest that proximal tubules could present
antigen to T cells (17, 45, 59, 70, 142).

The generation and activation of mononuclear phagocytes is
dependent on CSF1R and its ligand CSF1 (46). Interestingly,
CSF1R and its ligand CSF1 are upregulated in the tubules after
ischemia-reperfusion injury and transplant (88, 146). Tubular
recovery is CSF1R and CSF1 dependent and requires the
presence of mononuclear phagocytes (2). Proximal tubules also
express GM-CSF (19), a molecule which induces differentia-
tion of monocytes into phagocytes (46). Finally, kidney injury
molecule-1 (KIM-1) was shown to be highly expressed in
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injured proximal tubules. Ichimura et al. (55) demonstrated that
KIM-1 is in fact a phosphatidylserine receptor and as such can
function as a scavenger receptor. Therefore, during tubular
injury, proximal tubules are transformed into “semiprofes-
sional phagocytes.” Of note, KIM-1 can be upregulated any-
where from S1 to S3 proximal tubules, depending on the type
of injury (145).

We have reviewed similarities between epithelial cells and
innate immune cells. However, one important difference re-
mains between the two cell types: mobility. Renal epithelial
cells do not typically translocate. Therefore, epithelial cells
alone will not be able to accomplish higher levels of immune
activities (such as remote information transfer) unless they are
supported by immune cells (56, 122). Ultimately, epithelial
cells and immune cells are both essential in shaping renal
immunity.

Figure 2 and a Supplemental Movie show CX3CR1� my-
eloid cells in the live kidney (all supplementary material for
this article are accessible on the journal website). The chemo-
kine receptor CX3CR1 is widely expressed in mononuclear
phagocytes, and CX3CR1 has been central to define its lineage
and subsets (121, 143). The CX3CR1� renal mononuclear
phagocytes are remarkably heterogeneous in shape, signal
intensity, and motion, likely reflecting their functional diver-
sity.

Traditionally, immune cells are thought to exacerbate tubu-
lar injury through inflammatory cytokines. However, it is
increasingly recognized that certain subsets of immune cells
play protective roles via immune cell-epithelial cell interac-
tions. Many groups have reported intriguing epithelial cell-
immune cell cross talk. Lee et al. (75) demonstrated that M1
macrophages switch to a M2 phenotype when cocultured with
proximal tubular cells. Wang et al. (137) showed that proximal
tubules stimulated by endotoxin inhibit macrophage activation.
Others also showed that proximal tubules modulate mononu-
clear phagocyte function, maturation, and differentiation (64,
68). The interactions between renal epithelial cells and mono-
nuclear phagocytic cells are not restricted to proximal tubules.
Collecting duct epithelial cells also influence macrophage phe-
notypes (35). To investigate the role of myeloid cells in vivo,
clodronate and CD11b- or CD11c-diphtheria toxin transgenic
mice are often used. Although the outcomes may vary depend-
ing on the timing of depletion and models used (22, 24, 51, 52,
61, 75, 118), beneficial roles of mononuclear phagocytes have

been demonstrated by multiple groups (98). In a model of
cisplatin nephrotoxicity, CD11c depletion of diphtheria toxin
transgenic mice resulted in more severe injury, suggesting that
renal CD11c� mononuclear phagocytes mediate protection in
this model (131). Recently, Ferenbach et al. (31) showed that
clodronate does not deplete alternative M2 macrophages and
gives rise to less severe renal ischemia-reperfusion injury.
Taken together, compelling evidence indicates that reciprocal
interactions between mononuclear phagocytes and renal epi-
thelial cells are instrumental in maintaining the integrity of the
tissue environment. In other organs, even stronger evidence
exists that epithelial-immune cell interactions shape overall
organ immunity (14, 109, 127, 134).

Concluding Remarks

The kidney is a nonlymphoid, sterile organ, and yet renal
epithelial cells are surrounded by an extensive mononuclear
phagocytic network. These mononuclear phagocytes are piv-
otal in maintaining the tissue environment in health and dis-
ease. There exists considerable cross talk between mononu-
clear phagocytes and epithelial cells. In fact, renal epithelial
cells share many phenotypic and functional characteristics with
mononuclear phagocytes. Because renal epithelial cells are
positioned at the interface between the internal milieu and
external environment, it comes as no surprise that they can
serve as primary guardians of the kidney and the body as a
whole. As an example, we featured renal epithelial TLR4,
which is strategically located on the tubules so it can respond
to both systemic infection and local injury. Although innate
immune cells activated by injured renal epithelial cells are
commonly viewed as amplifiers of injury, protective roles of
innate immune cells are increasingly appreciated. Investiga-
tions of immunity at the whole organ level will likely reveal
more facets to the functions of renal epithelial and myeloid
cells. Some of these functions will be unique to one cell type
but others are likely shared by these sisters in arms.
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Fig. 2. Mononuclear phagocytic network in
the kidney. A–C: CX3CR1-enhanced green
fluorescence protein (EGFP) mouse was in-
jected with rhodamine-labeled (poly I:C)
(red), a TLR3 ligand, and the kidney was
imaged live. The CX3CR1-EGFP kidney
shows stationary dendritic cells with high
EGFP fluorescence (CX3CR1high dendritic;
arrowhead). Mobile spheroidal cells with ei-
ther high or intermediate EGFP fluorescence
are denoted as CX3CR1high spheroidal (long
arrow) and CX3CR1int spheroidal (short ar-
row). Poly (I:C) localized to CX3CR1int

spherical cells. CX3CR1high dendritic cells
and CX3CR1high spheroidal cells did not
take up poly (I:C). See also Supplemental
Movie (supplementary material for this arti-
cle is accessible on the journal website).
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